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Abstract—The onset of convection in an electrically conducting fluid confined within an infinite cavity
of rectangular cross section is examined for the case when the fluid is subjected to both a vertical
temperature gradient and a vertical magnetic field. Characteristic value equations governing fiuid
stability are derived and a modified Fourier technique is used to solve them. The critical temperature
gradient at the onset convection is found to be a function of the Hartmann number and of the cavity

aspect ratio.
NOMENCLATURE A, characteristic values of the even
2a, width of cavity; beam functions;
Amn, Bmn, expansion coefficients for Jsrand 6; s magnetic permeability;
2b, height of cavity; v, kinematic viscosity;
g, gravitational acceleration; s density;
hy, x; component of magnetic field; o, electrical conductivity;
k, coefficient of thermal diffusivity; 7, characteristic values of the odd
M, Hartmann number; beam functions;
P, sum of the hydrodynamic and é, magnetic stream function;
magnetic pressures; &, velocity stream function;
R, Rayleigh number; v, vertical component of i for
T, temperature; large y.
Ui, x; component of velocity;
uv, expansion functions for ¢; 1. INTRODUCTION
X, Y, expansion functions for 8; ONE oF the more interesting problems of dissipa-
Xy Cartesian co-ordinate. tive hydromagnetics, both because of its rele-

Greek symbols

a coefficient of volume expansion;

s

B, conductive temperature gradient;

v, cavity aspect ratio (= a/b);

T, 4, definite integrals defined below
equation (26);

3, wave number of the convection
cells;

g, non-dimensional vertical co-or-
dinate;

7, non-dimensional horizontal co-
ordinate;

0, temperature perturbation;

e, vertical component of & for
large v:
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vance to heat transfer in liquid metals under
laboratory conditions and because of its possible
geophysical importance, is the onset of thermal
convection within an electrically conducting
fluid subjected to the simultaneous action of an
adverse temperature gradient and an externally
applied magnetic field. The earliest investigation
of this phenomenon was undertaken by Thomp-
son [1] and by Chandrasekhar |2]. Both authors
extended the classical Bénard problem of con-
vective instability in a shallow layer of fluid
heated from below, to the case where a vertical
magnetic field acts on the fluid. The field was
found to have a strong stabilizing tendency with
the critical Rayleigh number depending upon the
magnitude of the Hartmann number. These
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results were later confirmed experimentally by
Nakagawa [3]. Regirer [4] has examined the
stability of a conducting fluid between parallel
vertical plates for a transverse magnetic field
while Sorokin and Sushkin [5] have given a
general discussion of hydromagnetic convection
within a cavity of arbitrary shape.

It is the purpose of the present paper to
examine the stability of a hydromagnetic fluid
confined within a cavity of infinite length and
rectangular cross section. A similar problem in
the absence of a magnetic field has recently been
considered by Velte [6]. He examined the stability
of laminar flow in a horizontal pipe of square
cross section when a temperature gradient acts
vertically. It will be shown below that the onset
of hydromagnetic convection within the rec-
tangular cavity depends not only on the magni-
tude of the Hartmann number but also upon the
cavity aspect ratio. A comparison with the
results of the Bénard problem will indicate that
the sidewalls of the cavity have an appreciable
stabilizing influence whenever the height-width
ratio is greater than unity.

2. FORMULATION OF THE PROBLEM

Consider an incompressible fluid of density p,
kinematic viscosity » and electrical conductivity
o confined within a cavity formed by the two
vertical planes x; = +a and the two horizontal
planes x2 = +b. The lower and the upper walls
of the cavity are assumed to be good thermal
conductors and maintained at temperature T3
and T respectively. The sidewalls are perfect
insulators and a constant vertical magnetic
field Hy permeates the fluid.

Within the framework of the Boussinesq
approximation [7], the equations governing
steady-state convection in this cavity are

vy op ohy

L= 2194 —
P1V; 8Xj axi + plyv Ui + /“"hj 8xj
- P(09 k) O)a (l)
hy ovy 1 2
g o, 8_x—j+ﬁ;Vhi’ 2
av; ohy

p=pill — (T — TY)], C))

oT kv

Ug 8Xj - Ta (5)
when expressed in Cartesian co-ordinates (xi,
Xz, x3) and mks units. Here v, 4, T and j are
the velocity, the magnetic field, the temperature
and the effective pressure while a is the coefficient
of volume expansion and k& the thermal diffu-
sivity of the fluid. If we assume that the convec-
tion is characterized by infinite horizontal rolls
(i.e. no x3 dependence), then equations (1)—(5)
reduce to

o(¢, V2 A(h, V2 7
e o =TT ©
Apagiory  dpogiory L o

(x1,X2) o(x1,x2) po  0x1

D e
where
AF,G)  OF (oG oG\ oF
Fony~ v~ (am) o
and
o2 02
V2= 7 + pr

¢ and ¢ are the velocity stream function and the
magnetic stream function, respectively. They
satisfy the continuity requirements (3) identically.

Since the interest here is not in obtaining
information concerning the absolute magnitude
of the functions , ¢, and T, but only in ascertain-
ing the critical temperature gradient at which
convection can first occur, it is possible to
linearize the above equations. Linearization is
accomplished by assuming that the functions
are infinitesimal perturbations superimposed
upon the stationary conditions A = Ho and
T=T — B + x2), where B = (T1 — T2)/2b
is the conductive temperature gradient. This
procedure leads, after introduction of the dimen-
sionless variables 1 = x1/a and { = x2/b, to the
equations

co

© 62
[Lz — (yM)? 52‘2] =R e ©
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o
Lo = a (10)
where
a2 &
L a2tV o

R = gaBat/kv = Rayleigh number.
M = pHopa(o/pv)}/2 = Hartmann number,
y = a/b = cavity aspect ratio,

and 6 the perturbation of the conductive tem-
perature profile 7. The boundary conditions
needed to make these equations determinate
follow directly from the non-slip requirement on
the velocity at the boundary and from the
assumed thermal properties of the walls. The
conditions are

ap o0

b= = =0 ==+l o
2

¢,_6—‘7/;=e=0 at { = +1.

3. SOLUTION FOR LARGE ASPECT RATIO

Before proceeding with a numerical treatment
of equations (9) and (10) for arbitrary y, it is of
interest to briefly consider two limiting cases for
which simple analytic solutions can be found.
The first of these limiting cases corresponds to a
cavity of large aspect ratio (y - o). Under this
circumstance the sidewalls have little influence
on the stability of the flow, so that one can
assume that the dependent variables have the
periodic form

= Y() exp idy, 6 = O({) exp idn, (12)

where 8 is the dimensionless wave number.
Substituting (12) into equations (9) and (10)
one obtains

[(2D* — &) — (yM)PD?¥ = i5RO, (13)
(2D? — 82)0 = i8¥, (14)

where D = d/d{. These equations can be com-
bined to yield

[D2 — (3/yP1{ID* — (3/yPP — (M[yPD2}¥ =
— (ZRHOY¥, (15)

with boundary conditions
Y(41) = D¥P(L1) = {[D? — (8/y)°P —
(M[y:D3¥(+1) = 0. (16)

Equation (15) and the boundary conditions
(16) are identical with those found for the
Bénard problem with vertically applied magnetic
field [2] and hence have the same characteristic
values. For M = 0, the lowest value of the
Rayleigh number is

1707-8

RVA — (_,

1/4
-z ) y =324y, (17)

and occurs at 8 ~ (7/2)y. It will be shown below
that this relation (hereafter referred to as the
Bénard limit) always yields a value lower than
the true critical Rayleigh number at finite 7.
When the magnetic interaction (~ M) becomes
large, equation (15) reduces to the inviscid form

DAD? — (3fyP1¥ = (#R[y*MBA¥, (18)

and is subject to the boundary conditions
Y(+1) = D?¥(4-1) = 0. The characteristic
relation corresponding to the lowest even mode
of this equation is

o o 1+ )

from which it follows that the minimum value
of R corresponds to disturbances of zero wave
length (8 —» o0).

(19)

4. SOLUTION FOR ZERO ASPECT RATIO
The second limiting form of equations (9) and
(10) is obtained by setting y = 0. Physically
this corresponds to the stability of a fluid
between infinite vertical planes [8]. The equation
governing stability is
dz (d4
d? (@*“R)‘”‘O
with boundary conditions ¥ = dy/dn = d%}/dxn*
=0 at = 41. It will be noted that this
equation is independent of the applied mag-
netic field. Solutions of (20) are identical with

those of a vibrating beam clamped at both
ends. They have the even and odd forms

(20)
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J __cosh An  cos Ay
eVeR T cosh A cos A’
] ) (21)
dodd — sinh 7 sin = ]
°dd = "¢inh »  sint’ ]

where 7, A = RY4, The corresponding charac-
teristic values are determined by the transcen-
dental equations

tanh A -+ tan A =0, cothr—cotr=0 (22)

and have the values A = 2:3650, 5-4978,...
and r = 39266, 7-0686,.... Convection will
first occur when the temperature gradient ex-
ceeds the value B ~ 31-3 kv/gaat.

5. NUMERICAL SOLUTION FOR ARBITRARY y
To solve the characteristic value equations for
arbitrary gap aspect ratio, we assume that the

|
riyM) I'ilyM) l
|
roM)  IieM) |
|
__________ |
|
My, — ATy, }
— A2y, — M2y, |
l
l
|

dependent variables can be represented by the
infinite series

b= S AmnUn)ValD. |

m,n=1

0= § anXm(n) Yn(g),

m,n=1
where Amn and Bnn are expansion coefficients
and [Un(n)Va(D], [ Xm(n) Yn(£)] a set of functions
satisfying the boundary conditions (11). Sub-
stituting (23) into equations (9) and (10), one
obtains

(23)

KURZWEG
o2
Z Amn [LZ - ()’M)z (@] UnVu
mon--1
0x,
— RBy f;fnz Yo=0 (2d
on
[ve) /dU )
Z BunL(Xm Yyn) ~ Amn (‘7)”'1 Ve =0. (25

mn=1

The expansion coeflicients in these equations can
be evaluated by a modified Fourier technique [9].
Essentially the method consists of multiplying
(24) by the function Ug(n)Vi({) and (25) by the
function Xi(n) Yi({), and then integrating over
the range — 1 <X » <{ 1, — 1 < { < 1. This pro-
cedure leads to an infinite set of linear algebraic
equations for the coefficients Aun and Bm.
The requirement that these coefficients have
non-trivial values, yields the infinite secular
determinant

— RIMi4;;  — RIM4ye
— RI24y; — RIZ4y5
——————————— —0, (26)
Hw £5()
435() 4350)
where
11
; o2
1o = | [ v [ 12— oae )
1T
hs UmVn d"] d‘_.,
P11 o
TH Ay, = ” UsV (;n Xm) Yadndl,

—1 -1
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1

+
2
J X1 Y: (5; Um) Va dn di,

1

+

+1
L9, =
-1
+1

j X2 Y1 L(XnYr) dy dL.

1

+1
4 (y) =

1

By choosing suitable expansion functions (i.e.
functions resembling the actual modes of con-
vection), it is possible to obtain good approxima-
tions for the lowest values of R by truncating
determinant (26) at finite &, /, m, n = N. In the
present analysis we chose to expand ¢ in terms
of the beam functions (21) and 6 in terms of sine
or cosine functions according to the symmetry
suggested by equations (24) and (25). Specifically,
the two physically relevant sets of expansion
functions used were

Xl Yal0) = sin (

and

where gqm = — cosh Apfcos Ay and rpm = —
sinh 7/sin 7,,. The expansions were terminated
at N = 3 so that the evaluation of R involved
the solution of an 18 x 18 determinant.

6. DISCUSION OF RESULTS

Results of the numerical analysis are sum-
marized in Figs 1-3. The onset of convection is
characterized by the appearance of horizontal
rolls whose number increases both as y and as
M increase. At M = 0, the instability manifests
itself in form of a single convective roll (1,1
mode) whenever y < 1-6 and as a double con-
vective roll (2,1 mode) for 1:6 <y < 2:6. A
comparison with the Bénard limit shows that
the critical Rayleigh number associated with
these modes is always in excess of the value
predicted by (17). This difference is a direct

Un(n)Vn(£) = [cosh Apn + gm cOS Amm] [cosh Anl + gn cOS Anl], ]
2m — 1 2n—1 L (27)
3 ) 7 COS (————2—) a, J
Un(m)Va($) = [sinh 7y + 1y sin 7mn] [cosh 2,8 + gn COS Anl],
(28)

Xom(n) Yu() = cos mmm cos (
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FiG. 1. Variation of Rayleigh number as a function of aspect ratio for M = 0 and M = 10.
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Fic. 3. Typical modes of convection at the

onset of instability in the absence of a

magnetic field. The contours represent the

iso-values ¢/, 0/0h.x = =09, +05,
+0-1.
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consequence of viscous damping due to the side-
walls and becomes appreciable as y— 0. At
v =1, M = 0, we find R = 161-6, a value about
half as large as that obtained by Velte [6] for a
cavity with perfectly conducting walls. The
effect of the magnetic field is to hinder the
onset of convection and to increase the number
of horizontal rolls occurring for a given aspect
ratio. For very large fields, the critical Rayleigh
number is proportional to the square of the
Hartmann number, in accordance with equation
(19). Typical modes at the onset of convection
for zero magnetic field, calculated by evaluating
the expansion coefficients An, and By, for
fixed R and y, are shown in Fig. 3. Application
of a magnetic field does not appreciably alter
the shape of these convection cells, but rather
causes a transition to a higher mode.
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Résumé—Le démarrage de la convection dans un fluide conducteur de ’électricité contenu dans une

cavité infinie de section droite rectangulaire est examiné dans le cas ot le fluide est soumis a la fois

4 un gradient de température vertical et & un champ magnétique vertical. Les équations aux valeurs

caractéristiques gouvernant la stabilité du fluide sont obtenues et une technique de Fourier modifiée

est employée pour les résoudre. On trouve que le gradient critique de température pour le démarrage
de la convection est une fonction du nombre de Hartmann et de I’allongement de la cavité,

Zusammenfassung—Der Beginn der Konvektion in einer elektrisch leitenden Fliissigkeit, die auf eine

unbegrenzte Vertiefung von rechteckigem Querschnitt beschriankt ist, wird fiir den Fall, dass die

Fliissigkeit sowohl einem vertikalen Temperaturgradienten wir auch einem Magnetfeld unterliegt,

untersucht. Gleichungen charakteristischer Werte fiir die Regelung der Fliissigkeitsstabilitit werden ab-

geleitet und eine abgednderte Fouriertechnik zu ihrer Lésung verwendet. Der kritische Temperatur-

gradient fiir den Konvektionsbeginn ergibt sich als Funktion der Hartmannzahl und des Verhiltnisses
von Breite zu Hohe der Vertiefung.

Anrnoranua—lccire0BaIocs HA4all0 KOHBEKIHUM B DICKTPHYECKH MPOBONALICH JRUIKOCTH,
BaKJIIOYEHHOI B HEOTPAHMYEHHYIO IIOJIOCTH YeTHPEXYTOJBbHOIO CeYeHHs, IS CIIy4asd, KOrAa
AAKOCTh HAXOMUTCA IOJ BO3feficTBUEM KaK BEPTHKAIBLHOTO TEMIEPATYPHOTO TPAJMEHTA,
TaK U BePTUKAILHOTO MATHUTHOTO 10JIA. BLIBEIeHH XapaKTePUCTHYECKUE YPABHEHNA, OTIHCH-
BAOUIME yCTONYMBOCTE FULKOCTH, U LA UX PEIIeHUA HCHOIb3YETCH HECKOJIbKO BULOM3M EHEH-
HHR merox @ypre. HalifileHo, 4T0 KPHTHMYeCKUI TEMIEPATYPHHIA IPAfMEHT, IPH KOTOPOM
HAYMHAETCH KOHBEKIUsA, ABIAETCA (QYHKIMell Kputepua XapTMaHA H OTHOCHTEIHHOTO
YATHHEHNA TIOJI0CTH.



