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CONVECTIVE INSTABILITY OF A HYDROMAGNETIC FLUID 

WITHIN A RECTANGULAR CAVITY 
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Abstract-The onset of convection in an electrically conducting fluid confined within an infinite cavity 
of rectangular cross section is examined for the case when the fluid is subjected to both a vertical 
temperature gradient and a vertical magnetic field. Characteristic value equations governing fluid 
stability are derived and a modified Fourier technique is used to solve them. The critical temperature 
gradient at the onset convection is found to be a function of the Hartmann number and of the cavity 

aspect ratio. 
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NOMENCLATURE 

width of cavity; 
expansion coefficients for I/J and 0; 
height of cavity; 
gravitational acceleration; 
xi component of magnetic field; 
coefficient of thermal diffusivity; 
Hartmann number ; 
sum of the hydrodynamic and 
magnetic pressures; 
Rayleigh number ; 
temperature ; 
XI component of velocity; 
expansion functions for *; 
expansion functions for 0; 
Cartesian co-ordinate. 

Greek symbols 
a, coefficient of volume expansion ; 

P9 conductive temperature gradient ; 

Y. cavity aspect ratio (= u/b) ; 
r, A, definite integrals defined below 

equation (26); 
6, wave number of the convection 

cells ; 
5, non-dimensional vertical co-or- 

dinate ; 

777 non-dimensional horizontal co- 
ordinate; 

0, temperature perturbation ; 
8, vertical component of 0 for 

large y ; 

characteristic values of the even 
beam functions; 
magnetic permeability; 
kinematic viscosity; 
density; 
electrical conductivity; 
characteristic values of the odd 
beam functions; 
magnetic stream function; 
velocity stream function; 
vertical component of 1F, for 
large y. 

1. INTRODUCTION 

ONE OF the more interesting problems of dissipa- 
tive hydromagnetics, both because of its rele- 
vance to heat transfer in liquid metals under 
laboratory conditions and because of its possible 
geophysical importance, is the onset of thermal 
convection within an electrically conducting 
fluid subjected to the simultaneous action of an 
adverse temperature gradient and an externally 
applied magnetic field. The earliest investigation 
of this phenomenon was undertaken by Thomp- 
son [l] and by Chandrasekhar 121. Both authors 
extended the classical Benard problem of con- 
vective instability in a shallow layer of fluid 
heated from below, to the case where a vertical 
magnetic field acts on the fluid. The field was 
found to have a strong stabilizing tendency with 
the critical Rayleigh number depending upon the 
magnitude of the Hartmann number. These 
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results were later confirmed experimentally by 
Nakagawa [3]. Regirer [4] has examined the 
stability of a conducting fluid between parallel 
vertical plates for a transverse magnetic field 
while Sorokin and Sushkin [5] have given a 
general discussion of hydromagnetic convection 
within a cavity of arbitrary shape. 

It is the purpose of the present paper to 
examine the stability of a hydromagnetic fluid 
confined within a cavity of infinite length and 
rectangular cross section. A similar problem in 
the absence of a magnetic field has recently been 
considered by Velte [6]. He examined the stability 
of laminar flow in a horizontal pipe of square 
cross section when a temperature gradient acts 
vertically. It will be shown below that the onset 
of hydromagnetic convection within the rec- 
tangular cavity depends not only on the magni- 
tude of the Hartmann number but also upon the 
cavity aspect ratio. A comparison with the 
results of the BCnard problem will indicate that 
the sidewalls of the cavity have an appreciable 
stabilizing influence whenever the height-width 
ratio is greater than unity. 

2. FORMULATION OF THE PROBLEM 

Consider an incompressible fluid of density p, 
kinematic viscosity v and electrical conductivity 
u confined within a cavity formed by the two 
vertical planes xl = fa and the two horizontal 
planes xz = fb. The lower and the upper walls 
of the cavity are assumed to be good thermal 
conductors and maintained at temperature TI 
and Ta respectively. The sidewalls are perfect 
insulators and a constant vertical magnetic 
field HO permeates the fluid. 

Within the framework of the Boussinesq 
approximation [7], the equations governing 
steady-state convection in this cavity are 

aha ’ 

‘j ax, - = h, ;; + !- v2hd, 
3 P 

(2) 

avi aht -= -_=o 
ax, axi 9 

P = pr[l - a(T - Tdl, 

(3) 

(4) 

‘11 -;$ = k V2T, 

when expressed in Cartesian co-ordinates (xi, 
x2, xs) and mks units. Here v, h, T and jj are 
the velocity, the magnetic field, the temperature 
and the effective pressure while a is the coefficient 
of volume expansion and k the thermal diffu- 
sivity of the fluid. If we assume that the convec- 
tion is characterized by infinite horizontal rolls 
(i.e. no xs dependence), then equations (l)-(5) 
reduce to 

CL a(4, ~24 ah4 w 
PY a(xl,x2) 

---= 
a(xl,x2) v V4$ + ga $5 (6) 

awwaxl~ www - -_._ 
ah, x2) a(xl,x2) 

=~A y2Tt 
ax; (7) 

!Lu 

W’d) _ 
a(xl,xz) 

k V2T, (8) 

where 

W, G) 
a(xl,x2) 

and 

$ and 4 are the velocity stream function and the 
magnetic stream function, respectively. They 
satisfy the continuity requirements (3) identically. 

Since the interest here is not in obtaining 
information concerning the absolute magnitude 
of the functions #, (6, and T, but only in ascertain- 
ing the critical temperature gradient at which 
convection can first occur, it is possible to 
linearize the above equations. Linearization is 
accomplished by assuming that the functions 
are infinitesimal perturbations superimposed 
upon the stationary conditions h = HO and 
T = TI - /3(b + x2), where j3 = (TI - T2)/2b 
is the conductive temperature gradient. This 
procedure leads, after introduction of the dimen- 
sionless variables 17 = xl/a and 5 = x2/b, to the 
equations 
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LB-.2 - 
877’ (10) 

where 

a2 a2 
L=7):3fY252’ 

R = gapaa/kv = Rayleigh number. 
M = pHoa(a/pv)1’2 = Hartmann number, 
y = a/b = cavity aspect ratio, 

and 0 the perturbation of the conductive tem- 
perature profile T. The boundary conditions 
needed to make these equations determinate 
follow directly from the non-slip requirement on 
the velocity at the boundary and from the 
assumed thermal properties of the walls. The 
conditions are 

a+ ae 
*-- = 

87 87 
=0 at7]=&1, 

*+s=o 
1 

(11) 

at 5 = *l. 

3. SOLUTION FOR LARGE ASPECT RATIO 

Before proceeding with a numerical treatment 
of equations (9) and (10) for arbitrary y, it is of 
interest to briefly consider two limiting cases for 
which simple analytic solutions can be found. 
The first of these limiting cases corresponds to a 
cavity of large aspect ratio (r -+ co). Under this 
circumstance the sidewalls have little influence 
on the stability of the flow, so that one can 
assume that the dependent variables have the 
periodic form 

# = Y(5) exp ia?, 0 = O(5) exp iSv, (12) 

where S is the dimensionless wave number. 
Substituting (12) into equations (9) and (10) 
one obtains 

[(raD2 - @)a - (~M)sDs]Y = iSR@, (13) 

(y2D2 - S2)O = iSY, (14) 

where D = d/d& These equations can be com- 
bined to yield 

[D2 - Wr)21 {CD2 - W>212 - W/d2D2>~ = 

- (~2R/r6Y, (15) 

with boundary conditions 

Y(&l) = DY(&l) = {[D2 - (S/Y)~]~ - 

(IvI/~)~D~}Y(&~) = 0. (16) 

Equation (15) and the boundary conditions 
(16) are identical with those found for the 
Benard problem with vertically applied magnetic 
field [2] and hence have the same characteristic 
values. For A4 = 0, the lowest value of the 
Rayleigh number is 

y = 3*214~, (17) 

and occurs at 6 N (71./2)~. It will be shown below 
that this relation (hereafter referred to as the 
Benard limit) always yields a value lower than 
the true critical Rayleigh number at finite y. 
When the magnetic interaction (- M) becomes 
large, equation (15) reduces to the inviscid form 

D2[D2 - (S/y)2]Y = (S2R/fW)Y, (18) 

and is subject to the boundary conditions 
Y(i 1) = D2Y(& 1) = 0. The characteristic 
relation corresponding to the lowest even mode 
of this equation is 

R = f;j2(yM)g [1 + @tr]~ (19) 

from which it follows that the minimum value 
of R corresponds to disturbances of zero wave 
length (6 -+ co). 

4. SOLUTION FOR ZERO ASPECT RATIO 

The second limiting form of equations (9) and 
(10) is obtained by setting y = 0. Physically 
this corresponds to the stability of a fluid 
between infinite vertical planes [8]. The equation 
governing stability is 

(20) 

with boundary conditions z+G = d#/dT = d4#/dr+ 
= 0 at 71 = f 1. It will be noted that this 
equation is independent of the applied mag- 
netic field. Solutions of (20) are identical with 
those of a vibrating beam clamped at both 
ends. They have the even and odd forms 
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* 
cash Xv cos xv 

even = -cxA ~-- ----- cos A ’ 
I 

sinh ~71 sin 7rj 
(21) 

*odd = -;jn-fi-;- -- si11;. 
J 

where r, h = R114. The corresponding charac- 
teristic values are determined by the transcen- 
dental equations 

tanh h + tan h = 0, coth T - cot T = 0 (22) 

and have the values X = 2.3650, 5.4978,. . . 
and T = 3.9266, 7.0686,. . . . Convection will 
first occur when the temperature gradient ex- 
ceeds the value ,L3 2: 31.3 kv/,tpad. 

5. NUMERICAL SOLUTION FOR ARBITRARY y 

To solve the characteristic value equations for 
arbitrary gap aspect ratio, we assume that the 

I 
r::wo WYM) . 1 

r:;wa 
I 

%Jw . I 

I 

. I ______----- 
- AllTll - AllT12 . 

- A12Tll - 412r12 . 

dependent variables can be represented by the 
infinite series 

1 

0 = c” BmnX?&) Y?&(5), i 
(23) 

m,n=l 

where Amn and Bmn are expansion coefficients 
and [Urn(v) l/n(<)], [X&y) Y,(5)] a set of functions 
satisfying the boundary conditions (11). Sub- 
stituting (23) into equations (9) and (lo), one 

* . 

The expansion coefficients in these equations can 
be evaluated by a modified Fourier technique [9]. 
Essentially the method consists of multiplying 
(24) by the function L/k(rl)Vl(<) and (25) by the 
function X~(T) Yz(<), and then integrating OVCI 
the range ~- 1 .< 17 5: 1, -- 1 :; 5 -< 1. This pro- 
cedure leads to an infinite set of linear algebraic 
equations for the coefficients A,, and B,,,. 
The requirement that these coefficients have 
non-trivial values, yields the infinite secular 
determinant 

- Rl=All - RPAlz . 

- RPAll - RF2412 . 

-- -_--_____ 

::<r> A::(r) 

A:;(Y) &4 . 

r 0, (26) 

where 

111 

obtains 
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+1+1 

4,f,h) = JJ xk yz L(xm YTL) d7 d5. 

-1-l 

By choosing suitable expansion functions (i.e. 
functions resembling the actual modes of con- 
vection), it is possible to obtain good approxima- 
tions for the lowest values of R by truncating 
determinant (26) at finite k, E, m, n = N. In the 
present analysis we chose to expand # in terms 
of the beam functions (21) and 6’ in terms of sine 
or cosine functions according to the symmetry 
suggested by equations (24) and (25). Specifically, 
the two physically relevant sets of expansion 
functions used were 

where qm = - cash X&OS h, and rm = - 
sinh r&in 7m. The expansions were terminated 
at N = 3 so that the evaluation of R involved 
the solution of an 18 x 18 determinant. 

6. DISCUSION OF RESULTS 

Results of the numerical analysis are sum- 
marized in Figs l-3. The onset of convection is 
characterized by the appearance of horizontal 
rolls whose number increases both as y and as 
M increase. At M = 0, the instability manifests 
itself in form of a single convective roll (1,l 
mode) whenever y -=c 1.6 and as a double con- 
vective roll (2,l mode) for 1.6 < y < 2.6. A 
comparison with the BCnard limit shows that 
the critical Rayleigh number associated with 
these modes is always in excess of the value 
predicted by (17). This difference is a direct 

urn(T)Vn(C) = [cash Am7 + qm COS ArnT] [cash An5 + qn COS hn51, 
1 

and 

urn(q) T/n(5) = bh Trn77 + rm. sin Trnq] [cash An< f qn COS MI, 
7 

FIG. I. Variation of Rayleigh number as a function of aspect ratio for M = 0 and h4 = 10. 

2n - 1 
Xm(v) Yn(Q = COS m777j COS -y-- n&T, ( 1 
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i 

Unstable 

FIG. 2. Variation of Rayleigh number as:a 
function of Hartmann number for a 

cavity of square cross section. 

I,I Mode 

(y = I, R= 161.6) 

+-.-, / 

2,l Mode 

i (y =2, R=2015) i 

FIG. 3. Typical modes of convection at the 
onset of instability in the absence of a 
magnetic field. The contours represent the 
iso-values */$,,,, 6/e,,, = iO.9, &to+, 

kO.1. 

3,l Mode 

( y = 3, R= 10180) 

Velocity Stream Function Jr Temperature Perturbation, 6 
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consequence of viscous damping due to the side- 
walls and becomes appreciable as y --f 0. At 1. 
y = 1, M = 0, we find R = 161.6, a value about 
half as large as that obtained by Velte [6] for a 

2, 

cavity with perfectly conducting walls. The 3. 
effect of the magnetic field is to hinder the 
onset of convection and to increase the number 
of horizontal rolls occurring for a given aspect 4. 

ratio. For very large fields, the critical Rayleigh 
number is proportional to the square of the 
Hartmann number, in accordance with equation 5. 
(19). Typical modes at the onset of convection 
for zero magnetic field, calculated by evaluating 
the expansion coefficients Anln and B,,, for 6. 
fixed R and y, are shown in Fig. 3. Application 
of a magnetic field does not appreciably alter 
the shape of these convection cells, but rather 7. 
causes a transition to a higher mode. 

8. 
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R&urn&&e dtmarrage de la convection dans un fluide conducteur de l’electricite contenu dam une 
cavite infinie de section droite rectangulaire est examine dans le cas oh le fluide est soumis h la fois 
a un gradient de temperature vertical et a un champ magnetique vertical. Les equations aux valeurs 
caracteristiques gouvernant la stabilite du fluide sont obtenues et une technique de Fourier modifiee 
est employee pour les rtsoudre. On trouve que le gradient critique de temperature pour le demarrage 

de la convection est une fonction du nombre de Hartmann et de l’allongement de la cavite. 

Zusammenfassung-Der Beginn der Konvektion in einer elektrisch leitenden Fltissigkeit, die auf eine 
unbegrenzte Vertiefung von rechteckigem Querschnitt beschrankt ist, wird ftir den Fall, dass die 
Fliissigkeit sowohl einem vertikalen Temperaturgradienten wir such einem Magnetfeld unterliegt, 
untersucht. Gleichungen charakteristischer Werte ftir die Regelung der Fliissigkeitsstabilitat werden ab- 
geleitet und eine abgeiinderte Fouriertechnik zu ihrer Losung verwendet. Der kritische Temperatur- 
gradient fiir den Konvektionsbeginn ergibt sich als Funktion der Hartmannzahl und des VerhPltnisses 

von Breite zn HGhe der Vertiefung. 

AHHOTcL~Hsr-BCCjrerrOBa~OCb HaYaJIO KOHBeKHMM B 3JIeKTpHHeCKH HpOBOARmen HIH)L(KOCTH, 
3aKJIIoYeHHOti B HeOI’paHH%?HHJ’IO nOJIOCTb HeTbIpeXyI’OJIbIIOI’O Ce4eHHH, AJIFi CHyHaH, KOrHa 
2KHAKOCTb HaX0HHTCf-I nOH B03AeHCTBHeM KaK BepTHKaJIbHOrO TeMnepaTypHOrO rpaHHeHTa, 
TaK I4 BCpTHKaJlbHOrO MarHHTHOrO HOJIH. BbIBeAeHn XapaKTt?pHCTH=IeCKMe YpaBHeHHH, OnHcbI- 
BaIomHe yCTOi%YHBOCTb XCHAKOCTH, H HJIH MX pemeHHH HCnOJIb3yeTCH HeCKOJIbKO BM,QOM3MCHeH- 
HbIlf MeTOH @ypbe. HatiAeHo, MT0 KpHTHHeCKMi8 TeMnepaTJ’pHbIH rpaAaeHT, HpH KOTOPOM 
HaHMHaeTCR KOHBCKHHH, HBJIReTCR &HKqI&i KPHTepliR XapTMaHa II OTHOCMTWIbHOrO 

J’&lHHf?HIlR IIOJIOCTH. 


